Lasery półprzewodnikowe to rodzaj laserów, które dojrzewają wcześniej i szybko się rozwijają. Ze względu na szeroki zakres długości fal, prostą produkcję, niski koszt, łatwą produkcję masową, a także ze względu na niewielkie rozmiary, niewielką wagę i długą żywotność, jej różnorodność rozwija się szybko i jej zastosowanie Zakres jest szeroki i obecnie jest ich ponad 300 gatunki.
W połowie lat 80. Beklemyshev, Allrn i inni naukowcy połączyli technologię laserową i technologię czyszczenia dla potrzeb praktycznych prac i przeprowadzili powiązane badania. Od tego czasu narodziła się techniczna koncepcja czyszczenia laserowego (Laser Cleanning). Powszechnie wiadomo, że związek między zanieczyszczeniami a substratami Siła wiązania dzieli się na wiązanie kowalencyjne, podwójny dipol, działanie kapilarne i siłę van der Waalsa. Jeśli tę siłę uda się pokonać lub zniszczyć, efekt dekontaminacji zostanie osiągnięty.
Odkąd Maman po raz pierwszy uzyskał wyjście impulsu laserowego w 1960 r., proces ludzkiej kompresji szerokości impulsu laserowego można z grubsza podzielić na trzy etapy: etap technologii przełączania Q, etap technologii blokowania modów i etap technologii wzmacniania impulsów ćwierkających. Wzmocnienie impulsu chirped (CPA) to nowa technologia opracowana w celu przezwyciężenia efektu samoogniskowania generowanego przez materiały lasera na ciele stałym podczas wzmacniania laserem femtosekundowym. Najpierw zapewnia ultrakrótkie impulsy generowane przez lasery z synchronizacją modów. „Positive chirp” zwiększa szerokość impulsu do pikosekund lub nawet nanosekund w celu wzmocnienia, a następnie użyj metody kompensacji chirp (negative chirp), aby skompresować szerokość impulsu po uzyskaniu wystarczającego wzmocnienia energii. Ogromne znaczenie ma rozwój laserów femtosekundowych.
Laser półprzewodnikowy ma zalety małych rozmiarów, lekkości, wysokiej wydajności konwersji elektrooptycznej, wysokiej niezawodności i długiej żywotności. Ma ważne zastosowania w przetwórstwie przemysłowym, biomedycynie i obronie narodowej.
Transmisja optyczna na bardzo duże odległości bezprzekaźnikowa zawsze była gorącym punktem badawczym w dziedzinie komunikacji światłowodowej. Badanie nowej technologii wzmocnienia optycznego jest kluczowym zagadnieniem naukowym, pozwalającym na dalsze zwiększenie odległości bezprzekaźnikowej transmisji optycznej.
W porównaniu z technologią dyskretnego wzmacniania światłowodów, technologia rozproszonego wzmocnienia ramanowskiego (DRA) wykazała oczywiste zalety w wielu aspektach, takich jak współczynnik szumów, uszkodzenia nieliniowe, szerokość pasma wzmocnienia itp., a także zyskała przewagę w dziedzinie komunikacji i wykrywania światłowodów. szeroko stosowane. DRA wysokiego rzędu może zapewnić wzmocnienie głęboko w łączu, aby osiągnąć quasi-bezstratną transmisję optyczną (to znaczy najlepszą równowagę stosunku sygnału optycznego do szumu i uszkodzeń nieliniowych) i znacząco poprawić ogólną równowagę transmisji światłowodowej/ wyczuwanie. W porównaniu z konwencjonalnym, wysokiej klasy DRA, DRA oparty na ultradługim laserze światłowodowym upraszcza strukturę systemu i ma tę zaletę, że produkuje zaciski wzmacniające, co wykazuje duży potencjał aplikacyjny. Jednak ta metoda wzmacniania nadal napotyka wąskie gardła, które ograniczają jej zastosowanie do transmisji/wykrywania światłowodów na duże odległości
Copyright @ 2020 Shenzhen Box Optronics Technology Co., Ltd. - Moduły światłowodowe China, producenci laserów sprzężonych z włóknami, dostawcy komponentów laserowych Wszelkie prawa zastrzeżone.